Phospholipase C in Dictyostelium discoideum. Identification of stimulatory and inhibitory surface receptors and G-proteins.
نویسندگان
چکیده
A combined biochemical and genetic approach was used to show that phospholipase C in the cellular slime mould Dictyostelium is under dual regulation by the chemoattractant cyclic AMP (cAMP). This dual regulation involves stimulatory and inhibitory surface receptors and G-proteins. In wild-type cells both cAMP and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) stimulated phospholipase C. In contrast, mutant fgd A, lacking the G-protein alpha-subunit G alpha 2, showed no stimulation by either cAMP or GTP[S], indicating that G alpha 2 is the stimulatory G-protein. In mutant fgd C cAMP did not stimulate phospholipase C, but stimulation by GTP[S] was normal, suggesting that the defect in this mutant is upstream of the stimulatory G alpha 2. Inhibition of phospholipase C was achieved in wild-type cells by the partial antagonist 3'-deoxy-3'-aminoadenosine 3',5'-phosphate (3'NH-cAMP). This inhibition was no longer observed in transformed cell lines lacking either the surface cAMP receptor cAR1 or the G-protein alpha-subunit G alpha 1; in these cells the agonist cAMP still activated phospholipase C. These results indicate that Dictyostelium phospholipase C is regulated via a stimulatory and an inhibitory pathway. The inhibitory pathway is composed of the surface receptor cAR1 and the G-protein G1. The stimulatory pathway consists of an unknown cAMP receptor (possibly the fgd C gene product) and the G-protein G2.
منابع مشابه
Signal transduction in Dictyostelium fgd A mutants with a defective interaction between surface cAMP receptors and a GTP-binding regulatory protein [published erratum appears in J Cell Biol 1988 Dec;107(6 Pt 1):following 2463]
Transmembrane signal transduction was investigated in four Dictyostelium discoideum mutants that belong to the fgd A complementation group. The results show the following. (a) Cell surface cAMP receptors are present in fgd A mutants, but cAMP does not induce any of the intracellular responses, including the activation of adenylate or guanylate cyclase and chemotaxis. (b) cAMP induces down-regul...
متن کاملChemotactic antagonists of cAMP inhibit Dictyostelium phospholipase C.
In Dictyostelium discoideum extracellular cAMP induces chemotaxis via a transmembrane signal transduction cascade consisting of surface cAMP receptors, G-proteins and effector enzymes including adenylyl cyclase, guanylyl cyclase and phospholipase C. Previously it was demonstrated that some cAMP derivatives such as 3'-deoxy-3'-aminoadenosine 3':5'-monophosphate (3'NH-cAMP) bind to the receptor a...
متن کاملSignal Transduction in Dictyostelium fgd A Mutants with a Defective Interaction between Surface cAMP Receptors and a GTP-binding Regulatory Protein
Transmembrane signal transduction was investigated in four Dictyostelium discoideum mutants that belong to the fgd A complementation group. The results show the following. (a) Cell surface cAMP receptors are present in fgd A mutants, but cAMP does not induce any of the intracellular responses, including the activation of adenylate or guanylate cyclase and chemotaxis. (b) cAMP induces down-regul...
متن کاملNon-chemotactic Dictyostelium discoideum mutants with altered cGMP signal transduction
Folic acid and cAMP are chemoattractants in Dictyostelium discoideum, which bind to different surface receptors. The signal is transduced from the receptors via different G proteins into a common pathway which includes guanylyl cyclase and acto-myosin. To investigate this common pathway, ten mutants which do not react chemotactically to both cAMP and folic acid were isolated with a simple new c...
متن کاملChemotaxis to cyclic AMP and folic acid is mediated by different G proteins in Dictyostelium discoideum
Mutant Frigid A (fgdA) of Dictyostelium discoideum is defective in a functional Ga2 subunit of a G protein and is characterized by a complete blockade of the cyclic AMP-mediated sensory transduction steps, including cyclic AMP relay, chemotaxis and the cyclic GMP response. Folic acid-mediated transmembrane signal transduction was investigated in this mutant; the results show that: (1) cell surf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 297 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1994